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a b s t r a c t

During the development of automated computational methods to detect minute compositional
changes in fuels, it became apparent that peak selection through the spectral deconvolution of gas
chromatography–mass spectrometry (GC–MS) data is limited by the complexity and noise levels inher-
ent in the data. Specifically, current techniques are not capable of detecting minute, chemically relevant
compositional differences with sufficient sensitivity. Therefore, an alternative peak selection strategy was
eywords:
as chromatography–mass spectrometry

GC–MS, GCMS)
arallel factor analysis (PARAFAC)
nalysis of variance (ANOVA)
eak selection
icrobiological contamination (MBC)

developed based on spectral interpretation through interval-oriented parallel factor analysis (PARAFAC).
It will be shown that this strategy outperforms the deconvolution-based peak selection strategy as well
as two control strategies. Successful application of the PARAFAC-based method to detect minute chem-
ical changes produced during microbiological growth in four different inoculated diesel fuels will be
discussed.

Published by Elsevier B.V.
iesel fuel

. Introduction

In many areas of fuel study, it is often necessary to examine
ultiple fuel samples with the goal of accurately determining their

ompositional similarity or dissimilarity. Such a capability would
irectly facilitate research in materials compatibility, fuel thermal
nd storage stability, and responses to environmental exposure. As
n example of the latter topic, the U.S. Navy frequently stores its
hipboard mobility fuels in seawater-compensated tanks, allowing
arine vessels to maintain ballast and stability as fuels are con-

umed. This type of storage provides a significant opportunity for
icrobiological contamination (MBC) from microorganisms intro-

uced from the seawater to metabolize fuels and render them
nusable or otherwise compromised. As there is a great deal of

nterest in exploring non-petrochemical, i.e. alternative, fuel usage
n board Naval ships, we have been engaged in a study to deter-
ine how these fuels are metabolized as a consequence of MBC

n seawater-compensated tanks. To this end, a sensitive analytical

trategy was needed to elucidate the relatively small changes that
ccur at the fuel-water interface.

Such an analytical strategy must not only be comprehensive and
ccurate but must also be as automated as possible to facilitate
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E-mail address: jeffrey.cramer@nrl.navy.mil (J.A. Cramer).

1 1National Research Council (NRC) Post-Doctoral Fellow.

021-9673/$ – see front matter. Published by Elsevier B.V.
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regular fuel analysis. Such a method consequently requires a high
level of analytic robustness, i.e. a built-in resistance to false positive
and false negative results, to allow for its practical and confident
application by non-expert users. Fortunately, a great deal of infor-
mation regarding fuel composition and performance can already be
obtained from gas chromatography–mass spectrometry (GC–MS)
[1–3] data, making it an ideal analytical technique upon which to
base an overall analysis strategy. Furthermore, a comprehensive
automated toolkit for interpreting GC–MS data is already available
in AMDIS (the Automated Mass Spectral Deconvolution and Identi-
fication System) [4], provided by the National Institute of Standards
and Technology (NIST) [5]. AMDIS functions by selecting chromato-
graphic peaks from the total ion chromatogram (TIC) obtained from
the summed GC–MS data. This peak selection follows from a spec-
tral deconvolution that is, in itself, reliant upon a noise analysis
and subsequent noise-compensated component perception. Spec-
tral peaks that are identified through deconvolution are then used
to choose the most relevant mass spectral profiles and, in turn, iden-
tify the components represented by them. It should be noted that
fuel-derived GC–MS data have previously been analyzed success-
fully with the AMDIS toolkit [6], rendering its use in the present
context, at least theoretically, a routine application. Unfortunately,

AMDIS deconvolution-based algorithms met with limited success
when applied to the noisy, complex data that were collected.

To address the limitations of deconvolution-based peak detec-
tion in such unfavorable GC–MS data, an alternative strategy was
developed, based on a well-established technique from the field of

dx.doi.org/10.1016/j.chroma.2010.12.037
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
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hemometrics known as parallel factor analysis (PARAFAC) [7]. The
se of PARAFAC was inspired by its ability to extract unique data
rofiles from three- or higher-dimensional data sets [8] that can be
ubsequently used to produce practical, quantitative predictions
9–11]. Extracted data profiles, based only on the chemically rele-
ant covariances common to all of the GC–MS spectra, effectively
inimize the effects of competing analyte diversities and instru-
ent noise in a comprehensive manner. In this instance, PARAFAC

unctions in much the same way as the deconvolution-based peak
election methodology, except that selected peak locations are
ased directly upon underlying linear data variance, as opposed to
erived data structures. It should be noted that two conceptually
imilar techniques have previously appeared in the literature, the
rst applying the Generalized Rank Annihilation Method (GRAM)
12] to gas chromatography–mass spectrometry data as produced
sing selected-ion monitoring (GC-SIM) [13], and the second com-
ining GRAM with PARAFAC to form the hybrid technique of
RAM-PARAFAC [14]. The use of GRAM in these two analysis strate-
ies enhances the resolution of individual components, but the
undamental algorithm, as is also the case with the previously
ublished DotMap algorithm [15], requires the collection of pure
omponent spectra to achieve the enhancement. In the present cir-
umstances, the sheer number of compounds that can potentially
e present in fuels renders the collection of pure component spectra
nrealistic.

Regardless of PARAFAC’s utility, however, the large amount of
umerical data present in the available GC–MS chromatograms will
end to exceed the practical limits on the available time and com-
uter resources required to perform even a basic PARAFAC analysis.

n addition, the number of spectral variances that are not co-linear
cross all retention times and mass/charge (m/z) ratios would hin-
er the derivation of underlying linear variances across the entire
ata set simultaneously. To address both of these challenges, an
pproach was developed that subdivides the parent data set and
xecutes a series of PARAFAC computations on smaller sequen-
ial portions of the original GC–MS data cube. Mass spectra, in this
ase, are selected through the use of “windows,” each consisting
f a predefined number of retention times, that can be visualized
s “moving” across the retention time axis. PARAFAC is performed
epeatedly upon the smaller three-dimensional data cubes defined
ithin these windows, and models are built to represent the most

ignificant underlying co-linear information in both the local reten-
ion times and MS spectra as well as the distribution of relevant
nformation amongst the samples. The maxima of the PARAFAC
etention time results are first used to select the most appropriate
etention times, as an alternative to the deconvolution-based peak
election. The mass spectral PARAFAC results corresponding to
elected retention times are then used to select compounds exactly
s if they were true mass spectra. Finally, normalized peak area
esults are used to scale derived amounts of compounds appropri-
tely for each sample to determine relative increases and decreases
n individual compounds between the samples represented within
he original data cube.

It is interesting to note that this technique’s development
as independently resulted in a final form similar to another
ARAFAC-based analysis strategy that has previously appeared in
he literature [16,17]. The differences between the previously pub-
ished and presently proposed strategies are found in how they
ccumulate and validate results. Specifically, the previously pub-
ished strategy focuses upon the use of multiple differently sized,
nd potentially quite large, PARAFAC models and the use of diag-

ostic values including match factor to internally compare the mass
pectral results obtained from multiple models to assure the quality
f results. The present technique, by contrast, produces consistently
mall PARAFAC models that vary in terms of their location instead
f their complexity. These models represent less spectral variance
. A 1218 (2011) 824–832 825

individually, but the use of many such overlapping models using
different retention time scales both captures all useful data vari-
ance and internally validates said variance without the use of larger
models or match factor values.

The effectiveness of the presently proposed interval-oriented
PARAFAC strategy to determine the impact of MBC on diesel fuel
composition is evaluated in the present work in terms of competing
and control strategies as well as the effects of modifying experi-
mental parameters. Then, the strategy will be applied to a variety
of diesel fuels to ascertain the chemical changes that occurred as a
consequence of MBC.

2. Materials and methods

2.1. Fuel samples

Initial GC–MS data, reported upon previously [18], were
collected from four different diesel fuels: a specification F-76
petrochemical diesel fuel; an ultra-low sulfur diesel (ULSD) petro-
chemical fuel; the same ULSD fuel containing 5% fatty acid methyl
ester (FAME) biodiesel (B5); and a Fischer–Tropsch (FT) synthetic
diesel fuel. For each fuel, five replicates was collected for each of two
conditions: (1) an abiotic control set consisting of synthetic seawa-
ter spiked with a relatively low dose of poisoned microorganisms
with microorganism-promoting nutrients, and (2) an experimen-
tal set consisting of synthetic seawater containing a relatively high
dose of microorganisms and microorganism-promoting nutrients.
After 25 days of exposure, the nutrients, microorganisms, and poi-
sons were removed from both sample sets prior to GC–MS analysis
to ensure that only the consequences of MBC on fuel composition
were assessed.

2.2. GC–MS analysis

Data were collected on an Agilent 5890 GC with an Agilent
5971 mass selective detector. Samples were diluted to 1:100
in dichloromethane, and injections of 1.0 �L were made with
an autoinjector. An AT-1 capillary column (50 m × 0.25 mm ID,
0.20 �m film thickness) was used with an oven temperature pro-
gram that initiated data collection at a temperature of 40 ◦C and
ramped at 10 ◦C/min to 290 ◦C, holding this temperature for the
remaining duration of the data collection. Data were collected at
column retention times from 6.8 to 36.1 min at a frequency of 2.8
mass spectra per second, over 40–279 m/z. It should be noted that
this data tended to show peak widths of between 7 and 9 variables,
or about 2–3 s, along the retention time axis.

3. Calculation

Analysis strategies are assessed in the present work by their
ability to determine which compounds within the fuel samples
increased and decreased as a consequence of MBC. Therefore, in the
following text, if compounds are detected at a greater abundance in
the control samples, they are said to be decreasing, and compounds
that are more abundant in the MBC experimental samples are said
to be increasing.

All GC–MS data were imported into MATLAB R2010a (Math-
Works, Inc., Natick, MA) and assembled into four data cubes,
each representing one of the different diesel fuels. Data decon-
volution, PARAFAC, and other peak-picking algorithms, as well as

preprocessing algorithms, were developed and performed within
the MATLAB environment with functionality provided by the
PLS Toolbox for MATLAB ver. 4.2 (Eigenvector Research, Inc.,
Wenatchee, WA). The PARAFAC algorithm was performed under
the constraints of non-negativity and orthogonality [8] unless
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therwise stated. It should be noted here that the alternative
pproaches to peak selection, all fundamentally based on modifica-
ions to the overall AMDIS methodology, still make use of the same
ompound identification algorithms developed within the context
f the AMDIS algorithm toolkit. These identification algorithms
ere used in concert with the alternative selection strategies in the

ame manner as they would have been used in a typical AMDIS-
ased analysis. Specifically, mass spectral data indicated by the
eak selections from all techniques are identified using the NIST
ass Spectral Search Program for the NIST/EPA/NIH Mass Spectral

ibrary, version 2.0f, build October 8, 2008 [19].
Before analysis, each raw sample chromatogram was first nor-

alized to unit area. Since the peaks relevant to each fuel did not
xtend past 25 min retention time, the inclusion of the longer tail in
his step helped to mitigate normalization-based data distortions.
fter normalization, each ten-sample fuel data cube underwent
self-contained correlation optimized warping (COW) procedure

20] with a window size of 100 data point variables and a slack
ength of 10 data point variables. It should be noted here that, based
n the frequency given previously, the total GC axis window size
orresponds to about 36 s worth of mass spectral data. The COW
reprocessing ensured that covariant chemical components would
e detected as such by correcting for minor shift variations across
he retention time axis.

The deconvolution-based peak selection procedure used in
MDIS was reproduced in the MATLAB programming environment

o allow for fine control over experimental parameters and vari-
bles. The AMDIS toolkit maintains several parameters that can
nd should be selected and, in many cases, adjusted by end users
o optimize results, as indicated in the published work [4] upon
hich AMDIS is based. For instance, the mass spectrometer abun-
ance threshold, i.e. the signal intensity that must be exceeded for a
ass spectral value to be saved to the instrument, was set to a con-

tant 150 m/z, a value established during instrument tuning. The
resent work also evaluates adjustments in the maximum number
f variables on each side of a potential GC peak to use for deconvo-
ution, which was set to 12 in the aforementioned published work
4]. A rejection threshold was additionally implemented to deter-

ine if possible peaks are relevant based on their height, which the
reviously published work defaults to 4× the noise level and the
resent work adjusts to optimize results. Finally, the aforemen-
ioned match factor (MF) value threshold produced by the NIST

ass Spectral Search Program can be used to quantify the likeli-
ood that the mass spectrum was identified correctly and reject
esults if necessary. Although MF was defined as a value between
and 100 in the original reference, the Mass Spectral Search Pro-

ram reports the value as a proportional value ten times greater, i.e.
–1000. For the purposes of direct comparison, these larger values
re scaled back to the original 0–100 range in the present work. It
hould be noted here that, although MF values are always inciden-
ally calculated when using the Mass Spectral Search Program, they
re actually used to quantify goodness of fit only when evaluating
he deconvolution-based peak selection methodology.

In performing the deconvolution-based peak selection algo-
ithm, the individual GC–MS replicate chromatograms were
ecessarily assessed separately. An overall set of combined results

or each ten-sample fuel population was obtained through a
wo-step procedure. First, whenever a component was detected

ultiple times within a single GC–MS chromatogram, the results
f these multiple detections were added together to form a sin-
le, unique component result for each sample. It should be noted

ere that this step, utilizing results obtained directly from the
ass Spectral Search Program, only added together those compo-

ents with identical names, and components that are differently
amed isomers of each other were not added together. Second,
hese unique component results, across all samples, were sorted
. A 1218 (2011) 824–832

from their highest to lowest values. This sorting occurred sepa-
rately for the control and MBC sample sub-populations. From these
overall results, changes in component content were identified if
the compared maxima and minima of the control and MBC results
could reliably accommodate the identification. Thus, a decrease
between the control and experimental samples was reported for a
given compound if the minimum component content amongst the
five control samples was greater than the maximum component
content amongst the five MBC samples, and vice versa. The most
accurate compound assessments obtained by using this algorithm
with multiple parameter settings are appropriately comparable to
the PARAFAC-based results and associated control trials.

PARAFAC was performed repeatedly upon the three-
dimensional data cubes defined by each ten-sample data set
as they are truncated along the retention time axis to the size of a
“window” at a series of positions. As a consequence, window size
and window positioning (or “movement” as defined by a regular
step size) are two scalable parameters that must be assessed
during the course of this work. To this end, the PARAFAC-based
peak selection is performed under two separate sets of parameters,
denoted in the remainder of the document as a ‘thorough’ version
of the technique (window sizes of 5, 100, and 300 data points, step
size 1 data point in all cases) and a ‘fast’ version of the technique
(window sizes of 25 and 150 data points, step sizes 20 and 10
data points respectively) based on their respective advantages.
It should be noted here that these window sizes correspond to
about 2, 36, and 107 s worth of GC–MS data in the case of the
thorough technique, and 9 and 53 s worth of GC–MS data in the
case of the fast technique. The GC PARAFAC results collected using
each window size/step size combination within each version of
the technique are compiled to produce a single list of selected
peaks. The mass spectral PARAFAC results corresponding to these
peaks are then assessed using the Mass Spectral Search Program,
and the relative amounts of each compound for each sample are
also obtained by calculating the area defined within each window.
These relative compound contents are then added together into an
overall result set and used to determine increasing and decreasing
compound contents, as percentages, between the two sample
populations as described for the deconvolution-based analysis.
It should be noted that percent changes are always calculated
as a change from the lower component content to the higher
component content, regardless of whether or not the components
are higher before or after MBC, to maintain the same relative scale
between components that are increasing and decreasing.

Two additional control strategies were also performed to further
evaluate the performance of the PARAFAC-based peak selection. In
the first control strategy, PARAFAC results were abandoned in favor
of the maximum total ion chromatograph (TIC) value to be found
within each window size/step size combination. As this does not
yield a complementary set of PARAFAC modeling results, average
mass spectra were first used to derive the component information
common to all of the spectra. Relative quantities of each compo-
nent were then derived, as with the interval PARAFAC technique,
by using the area of each normalized GC–MS spectrum of an indi-
vidual fuel sample within the given window. In the second control
strategy, peak selection was abandoned entirely, and all available
retention times were evaluated in terms of MS spectral content and
GC–MS spectral area. This last control strategy, which utilized no
initial input from the GC axis, necessarily assumes that compound
identifications based only on noise and other spectral artifacts will
not be consistent across all available MS spectra.
It was quickly determined that one-factor PARAFAC (or 1-
PARAFAC) models were the most useful within the context of the
present work. Not only were one-factor models slightly faster to
derive than larger models, but larger models were also not guar-
anteed to produce repeatable results, as would be required from
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Table 1
Automated GC–MS B5 fuel composition results using deconvolution-based peak selection. Column labels identify analysis parameters as maximum variable range/noise-based
rejection threshold. Results obtained with a match factor threshold of 75 are reported in parentheses only if they differ from results obtained using a value of 0.

6/4× 12/4× 18/4× 24/4× 30/4× 36/4× 50/4×
All Confirmed
Identified Negatives 0 0 0 0 0 0 0
False Positives 0 0 0 0 0 0 0
All FAME
Identified Negatives 1 1 0 0 0 0 1
False Positives 0 0 0 0 0 0 0

6/8× 12/8× 18/8× 24/8× 30/8× 36/8× 50/8×
All Confirmed
Identified Negatives 1 1 1 1 1 1 0 (1)
False Positives 0 0 0 0 0 0 0
All FAME
Identified Negatives 1 2 2 2 2 2 1 (2)
False Positives 0 0 0 0 0 0 0

6/20× 12/20× 18/20× 24/20× 30/20× 36/20× 50/20×
All Confirmed
Identified Negatives 1 1 1 1 1 1 1
False Positives 0 0 0 0 0 0 0
All FAME
Identified Negatives 1 1 2 2 2 2 2
False Positives 0 0 0 0 0 0 0

6/50× 12/50× 18/50× 24/50× 30/50× 36/50× 50/50×
All Confirmed
Identified Negatives 1 1 1 1 1 (0) 1 (0) 1 (0)
False Positives 0 0 0 0 0 0 0
All FAME
Identified Negatives 1 1 2 1 1 (0) 1 (0) 1 (0)
False Positives 0 0 0 0 0 0 0

6/100× 12/100× 18/100× 24/100× 30/100× 36/100× 50/100×
All Confirmed
Identified Negatives 0 0 0 0 0 0 0
False Positives 0 0 0 0 0 0 0
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All FAME
Identified Negatives 0 0 0
False Positives 0 0 0

n automated analysis strategy. This lack of repeatability is a con-
equence of PARAFAC’s Alternating Least Squares (ALS) algorithm
hen it is initiated with random variables and carried out under the

forementioned non-negativity and orthogonality constraints. This
LS algorithm is used to perform PARAFAC in the absence of a pri-
ri knowledge [8], which is necessary to maintain the technique’s
eneral applicability. The ALS algorithm arrives at a conclusion as
o how much linear data variance can be explained with each lin-
ar factor, and this conclusion arrives at this conclusion differently
epending upon these initial random variables. Although a trained
perator can decide upon the accuracy of a particular result, this
ould not apply if this procedure was to be automated for non-

xpert use. In comparison, repeatability and reliability are assured
ith a 1-PARAFAC modeling approach because the ALS algorithm

an only reach one unambiguous conclusion in the absence of
ultiple potential linear factors. Although it initially seems coun-

erintuitive to use such a small data model for such a large data set,
he sheer number of 1-PARAFAC models that are created during
he course of the interval-oriented strategy more than compen-
ates for individual model inadequacies. It should also be noted
hat the production of 1-factor PARAFAC model from normalized,

on-negative data renders the aforementioned constraints of non-
egativity and orthogonality superfluous, as the lone factors can
either be negative nor non-orthogonal to other factors. For the
ake of a comprehensive evaluation, the results obtained when
sing larger PARAFAC models will also be reported in the form of
0 0 0 0
0 0 0 0

three replicates per factor increase, and additional results will be
obtained without the orthogonality constraint in place.

Evaluations of the analysis strategies in the present work
were initially accomplished by focusing upon the analysis results
obtained from the B5 fuel since a list of components known to dis-
appear in 20% biodiesel fuel blends upon MBC is available in the
literature [21]. The B5 data set was analyzed using all versions of
the four techniques, and results were collected to determine how
many of the compounds that are known to be consumed (All Con-
firmed) were, in fact, found to be at lower concentrations compared
to the control samples (Identified Negatives) as well as how many
were falsely indicated to increase (False Positives). In addition,
Identified Negative and False Positive results were also obtained
assuming that each FAME constituent determined to be decreasing
during the course of the analysis was properly detected as such, and
that all FAME constituents determined to be increasing were erro-
neous. This was based on the fact that the metabolic breakdown
of every individual FAME constituent is very similar [22], and that
the metabolic consumption of the FAME compounds listed in the
literature strongly implies a decrease in other FAME compounds
upon MBC.In the context of a conservative automated analysis,

techniques are considered to be more successful when Identified
Negative results are high and False Positive results are as low as
possible. Once an analysis strategy was deemed to be acceptable
in accordance with these criteria, the specification F-76, ULSD, B5,
and FT diesel data sets were fully analyzed using that strategy.
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Table 2
Results of PARAFAC-based peak selection algorithm and two control algorithms on B5 fuel composition results.

All mass
spectra

Local TIC maximum
(thorough)

Local TIC
maximum (fast)

Local 1-PARAFAC
(thorough)

Local 1-PARAFAC
(fast)

All Confirmed
Identified Negatives 5 8 7 6 6
False Positives 4 9 6 3 1
All FAME
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a

Identified Negatives 11 9
False Positives 1 1
Running Time (s) 5243 15,870

. Results and discussion

.1. Parameter selection in deconvolution-based peak selection

Results of the deconvolution-based GC–MS evaluations, using
everal different combinations of maximum variable ranges and
oise-based rejection threshold levels, can be found in Table 1.
he MF threshold was also used for each listed set of results, at
oth 0 and 75, though, as reported in the table, the altering of
his threshold added very little discrimination to the overall anal-
sis. As can be clearly seen, the number of Identified Negatives,
or either Confirmed or All FAME compounds, is quite low regard-
ess of the number of variables used to deconvolute the peaks
r the noise threshold. The best results to be found in the table,
.e., simultaneous detection of one Confirmed compound and two
AME compounds, indicate in every case the detection of two
ethyl esters, with one of these results, methyl hexadecanoate or

exadecanoic acid methyl ester, confirmed in the literature and
dditionally reported as a Confirmed result. It should be noted that
he remaining results in the table indicate either methyl hexade-
anoate or the other methyl ester detected in the “best” results,
inolenic acid or (z,z,z)-9,12,15-octadecatrienoic acid methyl ester.
he results in Table 1 also indirectly illustrate the effects of high
evels of data complexity and noise on a deconvolution-based peak
election strategy, as the 4× rejection threshold, found to be ade-
uate in the original reference, performs poorly in the present
ircumstances.

The Identified Negative and False Positive results were par-
ially reproduced using the standard AMDIS software package at its
efault settings, which include MF corrections yielding a “net” MF
alue. This software makes use of the original, published scale for
F results, i.e. 0–100, with larger numbers denoting greater prob-

bilities of a match. Using the software, methyl hexadecanoate was
he only compound reliably identified in all of the control GC–MS
pectra with net MF values of 86, 84, 83, 85, and 85, and two of
he five experimental spectra with net MF values of 81 and 82. No
ompounds were reliably identified in the remaining three exper-
mental spectra, with net MF values of 66, 70, and 68 for methyl
exadecanoate.

The AMDIS deconvolution-based algorithms used for peak selec-
ion, then, were found to be insufficiently accurate in detecting very
mall compositional differences in diesel fuels that had undergone
BC. These initial results indicated that the complexity and noise

evels inherently present in this GC–MS data hindered the abil-
ty of the AMDIS toolkit to accurately select individual TIC peaks.
he major limitation of deconvolution in this context is scale, as
uels produce a complex and noisy background against which the
elatively minor peak changes between control and MBC-affected
amples are quite difficult to detect.
.2. Analysis strategy selection

The All Confirmed and All FAME results obtained by using the
lternative peak selection strategies, i.e. the two control strate-
5 15 9
1 1 0

732 24,360 978

gies and the PARAFAC-based strategy, are shown in Table 2. With
respect to confirming the loss of the compounds listed in the liter-
ature for MBC growth, the use of the local TIC maximum for mass
spectra selection actually provided the most Identified Negative
results, but at the expense of detecting an inordinate number of
False Positives. False Positive results themselves are minimized
through the use of the local 1-PARAFAC modeling strategy, and
the Identified Negative results for this technique are superior to
those obtained when using all mass spectra indiscriminately. The
PARAFAC-based modeling strategy also found the largest number of
FAME compounds decreasing in relative content between the con-
trol and experimental data sets, although it should be noted that a
False Positive does appear in these results. Although the thorough
version of the Local 1-PARAFAC peak selection strategy required
the most computational time to reach completion, the fast version
was completed in just a little over 16 min.

Based on these results, the PARAFAC-based peak selection strat-
egy was the most promising of the alternative peak selection
strategies, especially if analysis time is not considered a critical fac-
tor. Furthermore, when comparing the results in Table 2 to those
found in Table 1, it is clear that the best deconvolution-based peak
selection strategy did not perform as well as the PARAFAC strategy.

Regardless of the promising results shown in Table 2, the report-
ing of even a few false positive results is deemed unacceptable for
the purpose of developing an automated analysis tool that could be
relied upon by non-expert users. Furthermore, false positive results
in the present circumstances are seen as more detrimental to an
effective analysis than false negative results because false positive
results are obtained despite the known decreases occurring in the
detected component amounts. Initially, the ideal solution to filter
out erroneous PARAFAC-based results appeared to be the use of
MF values that are already calculated by AMDIS. Unfortunately,
low MF results do not consistently correlate with False Positive
results, as can be seen in the All Confirmed results from the thor-
ough version of the Local 1-PARAFAC in Fig. 1. Amongst the nine
Confirmed results found through the PARAFAC-based peak selec-
tion strategy, MF results varied widely enough amongst the False
Positive results so as to make them indistinguishable from the Iden-
tified Negative results. It should again be noted that MF values
have been incorporated in result validation in the aforementioned
similar PARAFAC-based techniques [16,17], but can be seen to be
insufficient for the present work.

The figure also shows the absolute percent changes that are cal-
culated between the control and experimental fuel populations
for the nine Identified compounds. These percent changes are
calculated from the same maxima and minima used to initially
determine if there is a significant difference in the content of a par-
ticular compound between the control and MBC populations. This
information is provided to show that the False Positive results indi-

cate relatively small changes compared to most of those indicated
by the Identified Negative results. This is reasonable, since the False
Positive results are based on incorrectly interpreted non-chemical
signals in the GC–MS data and would therefore be less likely to be
perceived as the same magnitude as the Negative results that are
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ig. 1. Adjusted match factor and percent change results derived from the nine Con
eak selection strategy.

ased on actual underlying chemical changes. This initially indi-
ates that there is merit in developing a validation parameter that
ccepts or rejects the presence of a given compound depending
n the magnitude of any detected increase or decrease. However,
n the example shown in the figure, setting such a parameter at
%, which would accurately reject the three False Positive results,
ould also reject the correct identification of tridecane and non-

decane, and reducing the sensitivity of an analytical technique to
rovide robustness is, of course, undesirable. Therefore, it is seen
ere that readily available metrics for result validation are not well-
uited to the present challenge, and a new metric can and should
e introduced to better accommodate the results produced by the
ultiple 1-factor PARAFAC models.
In order to better preserve the correct Identified Negative results

hile still discriminating against False Positive results, an alterna-
ive threshold-based strategy was developed. Specifically, analysis
f variance (ANOVA) [23] was used to determine if the results
btained from using either the PARAFAC algorithm or the control
trategies’ averaged mass spectra are, in fact, statistically distinct
rom random data variance. A one-way ANOVA test was used to

etermine if the control and MBC sample populations, as defined
y PARAFAC or area results, were statistically distinct popula-
ions. This evaluation was performed repeatedly with respect to
he compound identified at each window/step combination. To

able 3
esults of PARAFAC-based peak selection algorithm and two control algorithms, with an

All mass
spectra

Local TIC maximum
(thorough)

L
(

All Confirmed
Identified Negatives 7 5
False Positives 0 1
All FAME
Identified Negatives 9 8
False Positives 1 0
Running Time (s) 5078 14,853 7
d compounds identified through the use of the thorough version of the 1-PARAFAC

attain diagnostic information distinct from the area-based differ-
ence results and increase robustness, the technique was applied to
the PARAFAC results corresponding to the sample axis. Compound
results were only allowed to proceed further in the algorithms if
it was determined that the differences found between the sample
populations, as defined through PARAFAC, were statistically dis-
tinct from random noise to within a 99.99% confidence interval.
The results of using this one-way ANOVA assessment as a filter-
ing step in the alternative peak selection strategies are shown in
Table 3.

The results in Table 3 confirm the effectiveness of the ANOVA
filtering step to significantly decrease the number of False Positive
results in almost all cases. This also provides a significant improve-
ment in calculation times in almost all cases, likely a result of the
decreased use of the Mass Spectral Search Program. Unfortunately,
particularly in the case of the Local TIC Maximum control strategies,
the number of Identified Negative results also decreased, indicating
that their presence in the original results was in error. An inter-
esting, albeit unintended, benefit is also seen in the increase in
Identified Negative results obtained in a few cases. This increase

is a consequence of the removal of at least some of the misleading
intermediate results used to produce the final results. If, for exam-
ple, an Identified compound is determined to be decreasing in one
window/size combination but increasing in another, then the dis-

additional ANOVA result-filtering step, on B5 fuel composition results.

ocal TIC maximum
fast)

Local 1-PARAFAC
(thorough)

Local 1-PARAFAC
(fast)

4 6 5
0 0 0

4 16 9
0 0 0

31 20,023 847
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Table 4
PARAFAC-based analysis results obtained by using multiple underlying factors and the orthogonality constraint when selecting peaks during B5 fuel composition
determination.

2 Factors (Rep. 1) 2 Factors (Rep. 2) 2 Factors (Rep. 3) 3 Factors (Rep. 1) 3 Factors (Rep. 2) 3 Factors (Rep. 3)

All Confirmed
Identified Negatives 6 5 4 5 5 5
False Positives 2 0 1 0 1 1
All FAME
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However, the results in Tables 4 and 5 do not indicate that such
modifications would provide significant improvements in the com-
ponent results obtained using 1-PARAFAC combined with ANOVA
as reported in Table 3.

Table 6
“Fast” ANOVA-augmented 1-PARAFAC analysis results obtained from the B5 data
set.

B5 (5% biodiesel/95% ULSD) Percent increase
(+) or decrease (−)

1,1-cyclobutanedicarboxamide,
2-phenyl-n,n′-bis(1-phenylethyl)-

5.92

1,4-benzenediol, 2,6-bis(1,1-dimethylethyl)- 12.07
2-cyclohexen-1-ol, 2-methyl-5-(1-methylethenyl)- 4.78
benzene, 1-ethyl-3-methyl- 6.27
cyclotrisiloxane, hexamethyl- 72.02
1-heptatriacotanol −2.27
1-hexadecanol, 2-methyl- −5.55
2,5-octadecadiynoic acid, methyl ester −0.52
Identified Negatives 4 4
False Positives 2 1
Computational Time (s): 865 848 85

ribution of the maxima and minima across both the control and
BC sample populations would be significantly affected. If, on the

ther hand, one of these two sets of intermediate results is filtered
ut using ANOVA, then a final trend becomes more apparent.

The use of ANOVA removes all False Positives from the Local 1-
ARAFAC results, and almost all False Positives from the two control
trategies. Although ANOVA actually allows the control strategy
nvolving All Mass Spectra to be slightly more effective than the
ocal 1-PARAFAC strategies with respect to Confirmed results, the
ole remaining FAME False Positive result and the sheer number
f FAME compounds identified by the thorough 1-PARAFAC algo-
ithm still demonstrate the greater utility of the PARAFAC-based
eak selection. In the context of a conservative automated analysis,
ARAFAC combined with ANOVA, especially the thorough version
f the strategy, produces the most useful, reliable results.

.3. PARAFAC models using multiple factors

The results in Tables 4 and 5 show the results of determin-
ng multiple simultaneous underlying linear factors through the
ARAFAC peak selection algorithms, with and without the orthog-
nality constraint, respectively. These results were collected by
imicking the fast version of the original PARAFAC-based algo-

ithm in most respects and simply increasing the number of factors
o include in each model. Individual compound results from each
actor were first collected into a single set as if they were derived
rom a single factor, and then processed normally. The lack of confi-
ent repeatability necessitates the collection of replicates for each
umber of factors to more completely represent the desired infor-
ation.
Table 4 shows component results calculated with the orthog-

nality constraint in place. Although there is a slight increase in
omputation time when increasing the number of factors, the more
triking trend is the lack of repeatability in obtaining both All
onfirmed and All FAME results, either with respect to Identified

egatives or False Positives. Table 5, by contrast, shows the two-

actor model results recalculated with the orthogonality constraint
ifted. The lack of this constraint improves results considerably in
erms of both repeatability and thoroughness, which is consistent
ith the in-literature observation that orthogonality is difficult to

able 5
ARAFAC-based analysis results obtained by using multiple underlying factors
nd no orthogonality constraint when selecting peaks during B5 fuel composition
etermination.

2 Factors
(Rep. 1)

2 Factors
(Rep. 2)

2 Factors
(Rep. 3)

All Confirmed
Identified Negatives 8 7 8
False Positives 0 0 0
All FAME
Identified Negatives 7 8 8
False Positives 0 0 0
Computational Time (s): 26,450 26,348 26,365
4 4 4
1 1 2

902 917 901

find in chromatographic data [8,24]. In essence, lifting the orthogo-
nality restraint allows PARAFAC to have the flexibility to find more
appropriate underlying data factors in GC–MS data. However, not
only are the All FAME results still not as large as when 1-PARAFAC
models are used, but the times required to find underlying factors
with this newfound flexibility increase dramatically. These time
increases, in turn, could render the thorough version of the tech-
nique impractical if time is a consideration, as the thorough version
of the single-factor strategy can be performed in less time than the
fast version of the multifactor strategy.

It may be possible to modify the PARAFAC-based peak selec-
tion algorithm in such a way that the lack of repeatability would
be somewhat or perhaps even completely mitigated, such as with
result averaging, more stringent convergence parameters, or the
use of non-random initial values in the ALS algorithm. It may also be
possible to increase algorithm speed to allow for the more practical
removal of the orthogonality constraint to further improve results.
2-butyloxycarbonyloxy-1,1,10-trimethyl-6,9-
epidioxydecalin

−1.73

2-dodecen-1-yl(-)succinic anhydride −1.42
2-piperidinone, n-[4-bromo-n-butyl]- −1.98
7-heptadecene, 17-chloro- −1.46
9,12,15-octadecatrienoic acid, . . . ethyl ester, (z,z,z)- −0.32
9,12-octadecadienoic acid, methyl ester, (e,e)- −37.98
9,12-octadecadienoyl chloride, (z,z)- −35.92
9-octadecenoic acid (z)-, methyl ester −18.89
cyclopropanebutanoic acid, . . ., methyl ester −16.47
cyclopropanedodecanoic acid, 2-octyl-, methyl ester −4.86
cyclopropanepentanoic acid, 2-undecyl-, methyl ester,
trans-

−7.56

dodecane, 2,6,10-trimethyl- −4.31
falcarinol −0.47
hexadecane −5.76
hexadecanoic acid, 14-methyl-, methyl ester −6.48
hexadecanoic acid, methyl ester −49.13
nonadecane −4.85
octadecanoic acid, methyl ester −28.30
tert-hexadecanethiol −4.83
tetradecane, 2,6,10-trimethyl- −4.63
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Table 7
“Fast” ANOVA-augmented 1-PARAFAC analysis results obtained from the specifica-
tion F-76 diesel data set.

Specification F-76 diesel fuel (petrochemical) Percent increase
(+) or decrease (−)

1,1-cyclobutanedicarboxamide,
2-phenyl-n,n′-bis(1-phenylethyl)-

20.80

10,13-octadecadiynoic acid, methyl ester 16.64
10-heptadecen-8-ynoic acid, methyl ester, (e)- 10.98
12,15-octadecadiynoic acid, methyl ester 4.01
1-decen-4-yne, 2-nitro- 18.24
1h-2,8a-methanocyclopenta[a]cyclopropa[e]cyclodecen-

11-one,
. . .

2.15

1-octadecanesulphonyl chloride 5.00
2,5-octadecadiynoic acid, methyl ester 0.16
2-cyclohexen-1-ol, 2-methyl-5-(1-methylethenyl)- 17.56
5,7,9(11)-androstatriene, 3-hydroxy-17-oxo- 9.51
8,11-octadecadiynoic acid, methyl ester 2.70
9-hexadecenoic acid 9.97
benzene, (1,1-dimethylpropyl)- 20.54
benzene, 1,2,3-trimethyl- 27.69
benzene, 1-ethyl-2-methyl- 34.84
benzene, 1-ethyl-3-methyl- 25.04
benzene, 1-methyl-2-propyl- 20.03
benzene, 1-methyl-4-(1-methylethyl)- 18.55
benzeneacetaldehyde, à-ethyl- 19.03
cis-p-mentha-2,8-dien-1-ol 15.72
cyclopropanedodecanoic acid, 2-octyl-, methyl ester 13.40
dodecane, 5,8-diethyl- 17.17
ethyl iso-allocholate 6.68
heptadecane, 9-hexyl- 14.29
hexadecane, 1,1-bis(dodecyloxy)- 13.23
methyl 10,12-pentacosadiynoate 10.52
methyl 9,11-octadecadiynoate 12.07
nonane 8.00
octadecane, 3-ethyl-5-(2-ethylbutyl)- 14.53
oxiraneoctanoic acid, 3-octyl-, cis- 0.03
undecane 4.23
undecane, 2-methyl- 0.22
1,4-benzenediol, 2,6-bis(1,1-dimethylethyl)- −2.32
cyclotrisiloxane, hexamethyl- −20.25
dodecane −11.13
dodecane, 2,6,10-trimethyl- −15.86
hexadecane −12.40
n,n′-pentamethylenebis[s-3-aminopropyl thiosulfuric

acid]
−6.64

octadecane, 6-methyl- −3.24
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similar metabolic products in both. The fact that three of the five
components found to increase in the B5 fuel were also found to
increase in these petrochemical fuels also indicates a similarity
in metabolic products. It was also found that ten of the petro-
chemically shared fifteen compounds showed a more pronounced

Table 8
“Fast” ANOVA-augmented 1-PARAFAC analysis results obtained from the ULSD data
set.

Ultra-low sulfur diesel, or ULSD (petrochemical) Percent increase
(+) or decrease (−)

(e)-3(10)-caren-4-ol 8.93
1,1-cyclobutanedicarboxamide,

2-phenyl-n,n′-bis(1-phenylethyl)-
24.11

10,13-octadecadiynoic acid, methyl ester 22.81
13-heptadecyn-1-ol 5.74
1b,5,5,6a-tetramethyl-octahydro-1-oxa-

cyclopropa[a]inden-6-one
3.02

1-decen-4-yne, 2-nitro- 16.33
1-dodecanol, 3,7,11-trimethyl- 23.99
1-octadecanesulphonyl chloride 11.31
2,5-octadecadiynoic acid, methyl ester 6.25
2-cyclohexen-1-ol, 2-methyl-5-(1-methylethenyl)- 20.88
2-piperidinone, n-[4-bromo-n-butyl]- 9.35
3h-cyclodeca[b]furan-2-one, . . . 0.47
4,7-octadecadiynoic acid, methyl ester 3.44
benzene, 1,2,3-trimethyl- 26.04
benzene, 1-ethyl-3-methyl- 29.78
benzene, 1-methyl-4-(1-methylethyl)- 16.13
benzenebutanal 8.67
bicyclo[3.1.0]hexane-6-methanol,

2-hydroxy-1,4,4-trimethyl-
8.33

decane 16.30
dodecane, 5,8-diethyl- 14.54
e-2-octadecadecen-1-ol 14.81
falcarinol 2.75
heptadecane, 9-hexyl- 4.82
hexadecane, 1,1-bis(dodecyloxy)- 18.75
morphinan-4,5-epoxy-3,6-di-ol,

6-[7-nitrobenzofurazan-4-yl]amino-
4.61

naphth[1,2-b]oxirene, decahydro-1a,7-dimethyl- 4.87
n-nonadecanol-1 15.41
octadecane, 6-methyl- 24.13
oxiraneoctanoic acid, 3-octyl-, cis- 6.37
silane, trichlorodocosyl- 16.21
trans-z-à-bisabolene epoxide 3.06
z,z,z-1,4,6,9-nonadecatetraene 6.78
1,2-benzisothiazol-3-amine tbdms −20.32
1,4-benzenediol, 2,6-bis(1,1-dimethylethyl)- −18.33
5,7,9(11)-androstatriene, 3-hydroxy-17-oxo- −14.32
butylaldehyde,

4-benzyloxy-4-[2,2,-dimethyl-4-dioxolanyl]-
−14.59

cyclotrisiloxane, hexamethyl- −25.42
epi-epoxy-buphanamine −10.59
epoxybuphanamine −13.64

′

tetradecane −18.00
tetradecane, 2,6,10-trimethyl- −2.68
tridecane −17.56

.4. Additional MBC-derived fuel compositional changes

Tables 6–9 show the results of using the fast version of the
ARAFAC-based analysis strategy, augmented with ANOVA, with all
our fuel data sets described in Section 2.1. Although there are a few
on-fuel compounds reported in these tables that are the result of
xperimental or chromatographic artifacts, such as the appearance
f hexamethylcyclotrisiloxane via column bleed, they are left in
he tables for the sake of completeness and do not detract from the
onclusions drawn. The fast-version results are presented because
he more unwieldy results produced using the thorough version
f the strategy are not necessary to prove the concept behind the
nalysis. For the most straightforward example, one need only con-
ult Table 6, which contains the 5% biodiesel analysis results. As
escribed and shown previously, the analysis indicated that there
as a relative decrease in several different methyl esters in the B5

ample as they were metabolized by the microorganisms present in

he experimental samples. Concurrently, the concentrations of sev-
ral cyclic compounds were found to increase, suggesting that these
ompounds were being produced during microbiological growth as
ither direct or indirect MBC by-products.
. A 1218 (2011) 824–832 831

The results shown in Tables 7 and 8, together, present an
interesting combined assessment of the impact of microbiological
growth in petrochemical fuels. As a general trend in the specifi-
cation F-76 diesel fuel, larger hydrocarbons with low amounts of
branching, i.e., C12 and larger straight-chain hydrocarbons, some of
which possessing methyl groups, are converted through the pres-
ence of microorganisms into smaller chains, more branched chains,
and cyclic compounds. Furthermore, although the concentrations
of no less than fifteen compounds were identified as increasing or
decreasing in the same manner in both the F-76 high-sulfur diesel
fuel and the ULSD fuel, the compounds that decreased in both fuels
during microbial growth did not include the larger, low-branching
hydrocarbons. This indicates that MBC detracts from the chemical
compositions of these diesel fuels in differing fashions yet produces
n,n -pentamethylenebis[s-3-aminopropyl thiosulfuric
acid]

−13.81

olean-12-ene-3,15,16,21,22,28-hexol,
(3á,15à,16à,21á,22à)-

−0.90

perhydroindene-4-carboxylic acid, . . ., methyl ester −8.31
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Table 9
“Fast” ANOVA-augmented 1-PARAFAC analysis results obtained from the FT data
set.

Fischer–Tropsch (FT) synthetic diesel fuel Percent increase
(+) or decrease (−)

2,3-dimethyldecane 8.57
decane 12.66
decane, 3-methyl- 10.48
decane, 4-methyl- 12.25
decane, 5-methyl- 12.98
dodecane, 2,6,10-trimethyl- 17.32
dodecane, 2,7,10-trimethyl- 15.77
dodecane, 5,8-diethyl- 2.59
nonane 13.70
nonane, 3-methyl- 16.82
octadecane, 6-methyl- 16.07
undecane 13.54
undecane, 2,6-dimethyl- 14.21
heptadecane −1.86
hexadecane −3.19
hexadecane, 3-methyl- −2.48
n,n′-pentamethylenebis[s-3-aminopropyl thiosulfuric

acid]
−2.21

nonadecane −0.13
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octadecane −1.81
tetradecane −2.46
tridecane, 3-methyl- −4.77
tridecane, 4-methyl- −4.00

ercent change in the ULSD fuel than in the F-76 diesel, which sug-
ests that the effects of MBC are more pronounced in ULSD than in
igh-sulfur diesel fuels.

As expected, the compounds identified in the FT synthetic fuel,
efore and after MBC, were generally much less complex, with
ewer branched alkanes and functional groups, than found in either
he petroleum-derived fuels or the B5 fuel (Table 9). This makes
ome sense, as the Fischer–Tropsch process tends towards prod-
cts that are not as chemically diverse as those found in the other
uel types [25]. The major impact of MBC on the FT fuel composi-
ion was the conversion of straight-chain alkanes to more heavily
ranched hydrocarbons.

. Conclusions

An alternative peak selection strategy for quantifying changes

etween GC–MS data populations was developed based on an

nterval-oriented one-factor PARAFAC spectral interpretation aug-
ented with an ANOVA-based result-filtering step. Not only is this

trategy fundamentally effective, but due to its reliability it is also
ell-suited to the construction of an automated analysis strategy

[

[
[

. A 1218 (2011) 824–832

for use by non-expert fuel analysts. It has been shown to be effec-
tive with overly complex and noisy GC–MS data, a situation within
which a deconvolution-based peak selection strategy had difficulty
functioning properly. This strategy was successfully used to assess
four different types of diesel fuel to determine the chemical changes
that occur within each of them upon MBC. As no portion of the anal-
ysis strategy explicitly relies upon the assessment of fuel analytes,
other similarly complex mixed-hydrocarbon analytes and result-
ing GC–MS data populations could likely be assessed in a similarly
thorough fashion. Future work will center upon the implementa-
tion of this technique within a self-contained user interface being
developed within our laboratory.
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